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FIG. 1. Angular power spectra (Cl � hjalmj2i) of CBR
anisotropy for gravity waves (lower curves) and density per-
turbations (upper curves), normalized to the quadrupole
anisotropy; broken lines indicate sampling variance. Temper-
ature uctuations measured on angular scale � are approxi-
mately, (ÆT=T )� �

p
l(l + 1)Cl=2� with l � 200Æ=� (courtesy

of M. White and U. Seljak).

The CBR signatures are very di�erent: the tensor angu-
lar power spectrum falls o� quickly for l > 100 and its
level of polarization is about 30 times greater for l < 30
(see Figs. 1 and 2). However, there is a fundamental limit
to the accuracy with which the variance of the multipoles
can be determined: Because only 2l + 1 multiple ampli-
tudes can be measured for a given l, the variance can be
estimated to a relative precision of 1=

p
l + 1=2 (known

as sampling, or cosmic, variance).
Due to sampling variance T=S must be greater than

about 0.1 to ensure that the tensor signature of CBR
anisotropy can be detected [12]. In principle, polariza-
tion is more promising { T=S as small as 0.02 could be
detected [12]. In practice, approaching this limit would
be extremely diÆcult, requiring the polarization of the
anisotropy to be measured with 0.01% precision on large-
angular scales. Further, the polarization on these scales
is very sensitive to the ionization history of the Universe.
Direct Detection The ination-produced background of

gravity waves o�ers at least one advantage { the energy
per logarithmic frequency interval is roughly constant for
f = 10�15Hz to 1015Hz (see Fig. 3),

d
GW

d lnk
=


2
0 (V�=m

4
Pl)

(k=H0)2�nT

"
1 +

4

3

k

kEQ
+

5

2

�
k

kEQ

�2#
; (6)

where kEQ = 6:22�10�2Mpc�1 (
0h
2=
p
g�=3:36), is the

scale that entered the horizon at matter-radiation equal-
ity, 
0 is the fraction of critical density in matter (the
balance of critical density is assumed to be in vacuum
energy), 
GW is the fraction of critical density in grav-
ity waves, wavenumber k = 2�f , the Hubble constant

FIG. 2. Polarization angular power spectra for gravity
waves (broken) and density perturbations (solid). The polar-

ization of the CBR anisotropy is roughly
p

CP

l
=Cl (courtesy

of M. White and U. Seljak).

H0 = 100h km s�1Mpc�1, and g� counts the e�ective
number of relativistic degrees of freedom (3.36 for the
CBR and three massless neutrino species). The factor in
square brackets in Eq. (6) is a numerical �t to the trans-
fer function for gravitational waves, which accounts for
the evolution of gravity-wave modes after they re-enter
the horizon (see Ref. [13] for details).
The relationship between the tensor spectral index and

the overall amplitude can be used to rewrite Eq. (6) in
terms of nT (or T=S) alone. Using the fact that the
variance of the CBR quadrupole is given by the sum of
the scalar and tensor contributions (Q = T + S) and the
COBE measurement, Q ' 4:4�10�11 [14], it follows that
on the \long plateau" (k � kEQ, f � 10�15Hz)

d
GWh
2

d lnk
= 5:1� 10�15 (g�=3:36)

nT
nT � 1=7

� exp[nTN +
1

2
N2(dnT=d lnk)]; (7)

where N � ln(k=H0) ' 33 + ln(f=10�4Hz) + ln(0:6=h).
Note, if there are additional seas of relativistic particles
beyond the photons and three neutrino species (g� >
3:36), as has been advocated to improve the agreement
between the cold dark matter scenario and observations
of large-scale structure [15], the energy density in gravity
waves is increased, perhaps by a factor of three [16].
Since the spectrum is normalized at the Hubble scale

(k = H0) and extrapolated to frequencies that are some
15 orders of magnitude larger we have included the �rst
correction for the variation of the power-law index with
scale. The \running" of nT is given by [17],

dnT
d lnk

= �nT [(n� 1)� nT ] = �nT
m2
Pl

4�

�
V 0

�

V�

�
0

: (8)
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FIG. 3. Spectral energy density in gravity waves pro-
duced by ination; for T=S = 0:018, dnT =d ln k = �10�3,
0, 10�3. T=S = 0:18 (heavy curve) maximizes the energy
density at f = 10�4 Hz. Curves are from Eq. (6) using
H0 = 60km s�1Mpc�1, 
0 = 1, and g� = 3:36.

Typically, dnT=d lnk � �10�3 [17]; it can be of either
sign or even zero [18]. On a very optimistic note, a
CBR determination of T=S and a laser interferometric
determination of the average spectral index (�nT = nT +
0:5NdnT=d lnk) would allow the inference of dnT=d lnk.
An important feature of Eq. (7) is the amplitude {

tilt relationship: nT increases the prefactor, but tilts
the spectrum so as to decrease the amplitude at high
frequencies. At �xed frequency, the energy density is

maximized for nT = �
�p

1 + 28=N � 1
�
=14 � �0:025

(f = 10�4Hz). Values for nT of this order are realized
in several models of ination, e.g., chaotic ination.
The energy density in a stochastic background of grav-

itational waves can be expressed in terms of the rms

strain, h2rms(k) � k3jhkj2=2�2,

d
GW

d lnk
=

2�2

3

�
f

H0

�2
h2rms(k)

= 6:3h�2 � 10�7 (f=Hz)2 (hrms=10
�21)2: (9)

For �xed strain sensitivity, the energy-density sensitivity
varies with the square of the frequency because �GW /
h2rmsf

2, and so prospects for detection improve as 1=f2.
The range of T=S accessible to a gravity-wave detec-

tor operating at f = 10�4Hz and f = 100Hz is shown as
a function of energy sensitivity in Fig. 4. For either fre-
quency, a sensitivity of d
GWh

2=d lnk � 10�15 is needed
for a serious search for ination-produced gravity waves.
(The curves in Fig. 4 were computed from Eq. (7) with

0 = 1 and g� = 3:36; for 
0 < 1, only the labeling of
the ordinate changes, as the relation T=S = �7nT , used
to obtain the T=S values, is modi�ed slightly [19].)
LIGO and the other detectors now being built will

FIG. 4. The range of T=S probed (interval interior to
parabola) as a function of energy sensitivity for f = 10�4 Hz
(solid curves) and f = 100Hz (broken curves). The \pes-
simistic" (left) parabola assumes dnT =d ln k = �10�3 and
the \optimistic" (right) parabola assumes dnT =d ln k = 10�3.
Also shown are the limiting sensitivity of CBR anisotropy and
polarization.

operate at frequencies from 10Hz to several kHz, with
initial strain sensitivities of around 10�21, improving to
10�24 (at f = 102Hz) [20]. Eq. (7) tells the sad story:
Even the most optimistic estimate for LIGO's energy
sensitivity misses the mark by four orders of magnitude.
While Earth-based detectors cannot operate at lower fre-
quencies because of seismic noise, space-based detectors
can. Early estimates indicated that a strain sensitivity of
slightly better than hrms = 10�21 might be achieved at a
frequency of 10�4Hz [21], implying an energy sensitivity
d
GW=d lnk � 10�16, suÆcient to probe T=S � 0:01.
However, the design study for LISA indicates an en-
ergy sensitivity of around d
GWh

2=d lnk � 10�13, which
misses by two orders of magnitude [22]. (There is also a
worrisome background of coalescing white-dwarf binaries,
which could dominate ination at frequencies greater
than around 10�4Hz [21].)
Summary Gravity waves are an important prediction of

ination. The CBR is sensitive to the longest-wavelength
gravity waves (1026 cm to 1028 cm), but is fundamentally
limited by sampling variance. The high-resolution (l =
2� 2000) anisotropy maps that will be made by two fu-
ture satellite experiments, MAP and COBRAS/SAMBA,
might reach the sampling-variance limit, T=S � 0:1. Im-
proving this by polarization measurements does not look
promising. Laser interferometers are sensitive to much
shorter wavelengths (108 cm to 1013 cm). An energy sen-
sitivity d
GWh

2=d lnk � 10�15 is required to search for
the ination-produced gravity-wave background; a sensi-
tivity of 10�16 opens the window wide, perhaps allowing
T=S smaller than 0:01 to be detected. While Earth-based
laser interferometers are not likely to achieve this, there
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is some hope that space-based detectors operating at low
frequencies (< 10�4Hz) might.
We should temper our conclusions, which are based

upon the most accurate predictions available, with ac-
knowledgment of their limitations and our possible ig-
norance. Assumptions have been made: one-�eld, slow-
rollover ination with a smooth potential. Nature could
be more interesting. If ination ends with the nucle-
ation of bubbles there is an additional potent source
(
GW � 10�6) of gravitational waves in a narrow fre-
quency range [23]; pre-big-bang models predict a spec-
trum of gravity waves that rises with frequency, making
detection far more promising [24]; Grishchuk [25] has long
emphasized the production of gravitational waves during
the earliest moments in a variety of scenarios. Even if a
sensitivity of d
GWh

2=d lnk � 10�15 cannot be achieved,
it is still worth searching { there could be surprises!

We thank M. White for useful discussions. This work
was supported by the DoE (at Chicago and Fermilab)
and by the NASA (at Fermilab by grant NAG 5-2788).
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